RELATION  關係

FEATURE of TWO OR MORE THINGS TOGETHER.
RELATIVECONNECTIONRELATIONSHIPASSOCIATIONLINKCORRELATIONCORRESPONDENCEPARALLELALLIANCEBONDINTERRELATIONINTERCONNECTION
Antonym

ABSOLUTE

Hypernym

FEATURE -> OBJECT -> PRIME -> N/A

Hyponym
Old Chinese Criteria

1. The standard way of speaking of a relation in classical Chinese is the idiom “X zhī yú 之於 Y”.

Modern Chinese Criteria

關於

對於

至於

關係

瓜葛

干涉

干係

rough draft to BEGIN TO identify synonym group members for analysis, based on CL etc. 18.11.2003. CH /

Old Chinese Contrasts

LEIBNIZ 6.4 P. 28 R e l a t i o est secundum quod duae res simul cogitantur.

  • Dictionnaire culturel en langue francaise ( REY 2005) p. 4.103

  • Historisches Woerterbuch der Philosophie ( RITTER 1971-2007) p. 8.578

    RELATION

  • Using Chinese Synonyms ( GRACE ZHANG 2010) p. 93

Attributions by syntactic funtion

  • vtoN.adV : 129
  • p+N1.post-N2 : 18
  • PPpost-N1.adN2 : 10
  • vtoN1.post:N2{SUBJ}+ZHI:.adV : 9
  • vtoN : 8
  • vt[0]oN.postadV : 6
  • vt0oN.postVtt+npro : 6
  • vt0oN.adS : 4
  • vtoN.postadV : 4
  • vt0oN.-V : 3
  • PPpost-N1.adN2 : 1

Attributions by text

  • 莊子 : 22
  • 論語 : 21
  • 呂氏春秋 : 18
  • 韓非子 : 18
  • 孟子 : 17
  • 禮記 : 17
  • 史記 : 12
  • 管子 : 11
  • 韓詩外傳 : 10
  • 荀子 : 8
  • 說苑 : 7
  • 論衡 : 6
  • 淮南子 : 6
  • 春秋左傳 : 4
  • 春秋穀梁傳 : 3
  • 法言 : 3
  • 列子 : 2
  • 春秋繁露 : 2
  • 臨濟錄 : 2
  • 墨子 : 1
  • 尹文子 : 1
  • 戰國策 : 1
  • 典論一卷 : 1
  • 阮籍集四卷 : 1
  • 孝經 : 1
  • 妙法蓮華經 : 1
  • 太平經 : 1
  • 祖堂集 : 1

Words

   yú OC: qa MC: ʔi̯ɤ 164 Attributions
  • vt[0]oN.postadVin relation to, with respect to; in the matter of
  • vt0oN.adSrelating to, concerning
  • vt0oN.postVtt+npro白之於君 prepositition after a ditransitive verb with an object
  • vtoN.adVactrelating to, dealing with
  • vtoN.adVstativein relation to, within the field of, etc
  • vtoNstativerelate to; be directed towards
  • vtoN1.post:N2{SUBJ}+ZHI:.adVx之於y(也) "As for X's relation to Y,...
  • vtoN.postadVin relation to; as compared to (see also THAN)
   yǐ OC: k-lɯʔ MC: jɨ 18 Attributions
  • p+N1.post-N2in relation to
之於   zhī yú OC: kljɯ qa MC: tɕɨ ʔi̯ɤ 11 Attributions

The standard way of speaking of a relation in classical Chinese is the idiom “X zhī yú 之於Y” .

  • PPpost-N1.adN2"as for the relation of N1 to N2"
   hū OC: ɢaa MC: ɦuo̝ 3 Attributions
  • vt0oN.-V(V-er) in relation to/as compared to (N) 莫大乎X
   yú OC: ɢʷra MC: ɦi̯o 1 Attribution
  • vtoN.adVin relation to N to V
   yān yán MC: hjen OC: ɢan 1 Attribution
  • vtoN.postadVfunctions like a preposition 於 
   yǒu OC: ɢʷɯʔ MC: ɦɨu 0 Attributions
  • vtoNextended meaning in the construction: A 之有 B, 若/猶 X 之 有 Y 也. A having B (A is to B) is like X having Y
   lǜ OC: rud MC: lit 0 Attributions
  • nabmathematical termCHEMLA 2003:
密率   mì lǜ OC: mbriɡ rud MC: mit lit 0 Attributions
  • NPabmathematical termCHEMLA 2003:
相與   xiāng yǔ OC: sqaŋ k-laʔ MC: si̯ɐŋ ji̯ɤ 0 Attributions
  • VPtoNmathematical termCHEMLA 2003:
重疊   chóng dié OC: doŋ dɯɯb MC: ɖi̯oŋ dep 0 Attributions
  • VPimathematical termCHEMLA 2003: have a common divisor (first occurs in Liu Hui's commentary to JZ)Background: Number theory was developed in ancient Greece, and little elaborated in ancient China. An example being that you have no concept of a prime number in ancient Chinese sources, whereas the Greek concept of a prime number played a significant part in Euclid's book 7. Chóng dié is important because it does constitute one of the rare examples of number theory concepts in ancient China.The concept of chóng dié is approached through a geometrical representation of a number. Thus the number six can be represented as a series******or as piled-up (dié) diads:* ** ** *The number four will be* ** *Now the use of repeated elements in this representation is called chóng dié, and this method constitutes a visual approach to the concept of one concept of a common divisor number theory. Chóng dié occurs when two numbers are considered in relation with each other, and if both are reiterations with the same base layer, then simplification takes the form of dividing by the number of shared elements in one horizontal row.JZ 1.6, Liu Hui's comm: 其所以相減者皆等數之重疊 "The reason why they are subtracted from each other is that they all are reiterated "pilings-up" of the equal number (i.e. the common divisor)"JZ 1.18, Liu Hui's comm: 分重疊則約也 "if the parts are reiteration "pilings up", then one simplifies (scil. by dividing by the number of shared elements in one horizontal row)."
所有率   suǒ yǒu lǜ OC: sqraʔ ɢʷɯʔ rud MC: ʂi̯ɤ ɦɨu lit 0 Attributions
  • NPabmathematical termCHEMLA 2003:
所求率   suǒ qiú lǜ OC: sqraʔ ɡu rud MC: ʂi̯ɤ gɨu lit 0 Attributions
  • NPabmathematical termCHEMLA 2003:
相與率   xiāng yǔ lǜ OC: sqaŋ k-laʔ rud MC: si̯ɐŋ ji̯ɤ lit 0 Attributions
  • NPabmathematical termCHEMLA 2003:
重有分   chóng yǒu fēn OC: doŋ ɢʷɯʔ pɯn MC: ɖi̯oŋ ɦɨu pi̯un 0 Attributions
  • VPimathematical termCHEMLA 2003: there are different types of parts/fractionsThis refers to two mathematical situations: firstly, the case where several parts>fractions have different denominators and thus constitute different types of "parts", or alternatively where two parts>fractions are added to a given integer. (When the parts>fractions have the same denominator, the expression for this situation is 有分.) This first situation is never explicit in JZ, but it is referred to by Li Chunfeng (comm on Zhang Qiujian suanjing ed. Qian Baocong 1963, p. 334. Cf also Xia hou yang suanjing, ed. Guo Shuchun and Liu Dun, Liaoning Jiaoyu Chubanshe, vol. 2, p. 1 where reference is made to 分不均 "...when the fractions have no common denominator..."). Secondly, it refers to a situation when (in linguistic parlance, one fraction is embedded in further fractions, or when the partitioning is (in mathematical terms) recursive, as in 1 divided by three, further divided by 5. (1/3)/5. The commentaries on JZ make it clear that notions of this sort are intended in the JZ.
相當之率   xiāng dāng zhī lǜ OC: sqaŋ taaŋ kljɯ rud MC: si̯ɐŋ tɑŋ tɕɨ lit 0 Attributions
  • NPabmathematical termCHEMLA 2003:

Existing SW for

Here are Syntactic Words already defined in the database: